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Abstract About 30% of the potato plants from a
(Solanum tuberosum £ S. berthaultii) £ S. tuberosum
backcross population had chlorotic, malformed
leaves; but a gradation in symptom severity suggested
regulation by more than one gene. The study was
undertaken to determine whether this was the case,
whether any genes previously reported to control
chlorosis in potato were involved, and to see how
symptoms were related to eVects on chlorophyll con-
tent. Testing for quantitative trait loci indicated major
control by a single recessive gene on chromosome 1,
close to one or more loci that have been reported to
produce chlorosis in tomato, but distinct from similar
genes previously identiWed in potato. The proposed
symbol for the potato gene that confers phenotype
with chlorotic and malformed leaves is cml (chlorotic

and malformed leaves). The eVects of this gene
appeared to be accentuated by a second gene, located
on chromosome 12. Chlorotic plants showed a 50%
decrease in chlorophyll b level in the aVected parts of
leaves. It is concluded that cml is diVerent from previ-
ously reported genes for chlorosis in potato, that at
least one other gene modiWes the intensity of symp-
tom expression, and that the observed chlorosis is
produced through eVects on chlorophyll b level.
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Abbreviations

allele B An allele, originating from S. berthaultii,
on the linkage map for segregation from
the hybrid parent

allele TR An allele, originating from the recurrent
S. tuberosum, on the linkage map for seg-
regation from the recurrent parent

CIM Composite interval mapping
DW Dry weight
LRS Likelihood ratio statistics
SIM Simple interval mapping

Introduction

Cultivated potato (Solanum tuberosum) is a vegeta-
tively propagated autotetraploid species (2n = 4x = 48)
with complex polysomic inheritance. It has been
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pointed out that autotetraploidy associated with vege-
tative propagation enables potato cultivars to main-
tain a high level of heterozygosity and to store a large
number of deleterious recessive mutant genes (Herm-
sen et al. 1978). Included among such recessive genes
are chlorotic mutants, several of which have been
described in potato.

In a (Solanum tuberosum £ S. berthaultii) £
S. tuberosum backcross population that we have used
to map a variety of quantitative traits, some genotypes
showed reduced vigor, associated with malformed,
chlorotic leaves; but there was a wide range in the
severity of symptoms. The gradation in symptoms
from severe to mild to undetectable suggested poly-
genic inheritance, and we therefore examined the
population for quantitative trait loci (QTLs) associ-
ated with the trait. The objectives of our study were
(1) to map QTLs for chlorosis in the backcross map-
ping population, (2) to determine if the chlorosis is
controlled by a major gene with modifying genes, or
several minor-eVect genes, and (3) to Wnd out if
observed chlorosis was associated with changes in
chlorophyll a or b levels.

Materials and methods

The population studied was created by backcrossing
a haploid Solanum tuberosum (HH1-9) to a hybrid
of haploid S. tuberosum (USW2230) £ diploid
S. berthaultii (PI 473331), where the hybrid clone
was the female. Bonierbale et al. (1994) performed
RFLP linkage mapping on this population, and it is
the same population that was used to Wnd QTLs for
tuberization (Van den Berg et al. 1996b; Ewing
et al. 2004), dormancy (Van den Berg et al. 1996a),
polyamines in leaves (Davies et al. 1999), levels of
abscisic acid in tubers (Simko et al. 1997), sugars in
phloem sap (Simko et al. 1999), and resistance to
Phytophthora infestans (Ewing et al. 2000; Simko
2002; Rauscher et al. 2006) and Verticillium albo-
atrum (Simko et al. 2004a). The genotypes in the
population were maintained as in vitro plants.

Because of the heterozygous nature of the parental
clones, segregating alleles from both parents contrib-
uted to the genetic variation of progenies in this popu-
lation. Two molecular linkage maps were constructed
by Bonierbale et al. (1994)—one based on segrega-
tion from the hybrid parent (S. berthaultii alleles, B)

and the other based on segregation from the recurrent
parent (S. tuberosum alleles, TR). In the framework
map that is based on segregation from the hybrid par-
ent there are 81 loci at average intervals of 10 cM.
There are 35 markers in the map based on recombina-
tion from the recurrent parent, and they are not as
uniformly distributed as are the 81 markers; chromo-
somes 1, 7, and 12 have only one marker each. The
integrated molecular linkage map that combines the
two framework maps was produced using the Join-
Map version 3.0 (Stam 1993) computer software.

Plants of 158 genotypes, along with the original
parents, the hybrid used in constructing the backcross
population, and siblings of the hybrid were grown in a
plastic greenhouse under ambient summer tempera-
tures at Cornell University. The light intensity in the
greenhouse varied from 250 �mol m¡2 s¡1 on a
cloudy day to 1,500 �mol m¡2 s¡1 on a sunny day.
Temperatures during the day varied between 20°C
and 35°C; night temperatures varied from 15°C to
20°C. The experiment was repeated over 2 years, with
Wve plants per genotype the Wrst year and four plants
the second.

Plants were rated for chlorosis and leaf malforma-
tion approximately 7 weeks after transplanting. There
was a close association between the two traits, and a
single rating was made to represent both. The rating
scale was from 0 to 2: 0 indicated no symptoms
(Fig. 1a); 1, mild to moderate chlorosis and malfor-
mation (Fig. 1b); and 2, severe chlorosis and malfor-
mation (Fig. 1c). The second year, ratings were made
twice, a week apart. Data for the Wve plants were
averaged for the Wrst year, and data for the four plants
(two ratings per plant) were averaged for the second
year. Thus for each of the 158 genotypes there were
two mean values, one for each year. The mean values
for the 2 years were averaged, and the resulting
means were used for QTL analysis.

Chlorophyll was extracted from whole expanded
leaves of similar age and size in 80% acetone solu-
tion. Concentrations of chlorophyll a and b were cal-
culated according to the formula of Wellburn (1994).

Statistical analyses of the linkage between RFLP
markers and chlorosis rating were performed by Map-
Manager QTX software (Manly et al. 2001). The soft-
ware generates likelihood ratio statistics (LRS) as a
measure of signiWcance of possible QTLs (Haley and
Knott 1992). The LRS has been converted to the con-
ventional base-10 LOD score by dividing it by 4.61.
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For main eVects, a threshold value of LOD = 2.70
was set for declaring a marker signiWcant in a QTL
model. The appropriate threshold value was deter-
mined from 10,000 random permutations that take
into account the trait distribution in the mapping pop-
ulation (Churchill and Doerge 1994). Simple interval
mapping (SIM) was used to Wnd a signiWcant marker-
trait association. SIM was followed by composite
interval mapping (CIM), which can locate a QTL
while controlling for the eVect of other QTLs (Jansen
1993; Zeng 1993). Interactions between pairs of loci
were tested in a two-stage test as suggested in the
MapManager QTX manual. First, the total eVect of
the two loci must have a P-value less than 10¡5. Sec-
ond, the interaction eVect itself must have a LOD
score more than 6.40 (estimated from 1,000 random
permutations). This two-stage test is used because the
interaction signiWcance eVect by itself cannot be reli-
ably tested if there is the possibility of strong main
eVects (MapManager QTX manual) (Manly et al.
2001).

Results

Occurrence of the defect

No chlorosis was detected in either parent used in the
original cross, in any of the 20 hybrids resulting from
that cross, or in the haploid S. tuberosum used for the
backcross. Fifty of the 158 genotypes in the back-
cross population showed at least some degree of
chlorosis and malformation. The intensity of chloro-
sis was highly variable among genotypes (Fig. 1);
and the milder forms (Fig. 1b) were aVected with
mosaic too faint to be distinguished in our photo-
graphs, although malformed leaXets are evident
(Fig. 1d, center). We have grown the plants in subse-
quent years and found that those originally classiWed
as chlorotic continued to exhibit symptoms consis-
tent with the original classiWcations (data not
shown). Representative aVected plants gave negative
ELISA tests for the viruses PLRV, PVY, PVX, PVA,
and PVM (data not shown).

Fig. 1 Comparison of the 
normal phenotype (a) with 
mildly (b) and severely (c) 
aVected chlorotic pheno-
types. The three leaves (d) 
were taken from the three 
plants shown in a–c, respec-
tively, left to right. Although 
not visible in the photo-
graph, the center leaf was 
faintly mosaic
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The frequency distribution of mean ratings for the
chlorotic defect was bimodal, weighted toward what
would be expected from a monogenic trait, but with a
signiWcant number of intermediate values (Fig. 2).
This would be consistent with segregation of one
gene with a major eVect, accompanied by the segrega-
tion of one or more genes with lesser eVects.

Major eVect QTLs

For main eVects, linkage analysis with B alleles seg-
regating from the hybrid parent yielded a highly sig-
niWcant QTL on chromosome 1 (SIM LOD = 6.43,
CIM LOD = 8.72), between the markers TG70 and
TG71 (Fig. 3). Through linkage analyses with TR alle-
les segregating from the recurrent parent we also
found one main eVect QTL. It was linked to marker
TG116 (SIM LOD = 3.13, CIM LOD = 4.90), the
only marker on chromosome 1 that had segregating
TR alleles.

In view of the proximity of TG116 to TG71
(11.4 cM, Fig. 3), it is likely that the analyses with
segregating TR alleles and segregating B alleles
tagged the same QTL. To examine this possibility, we
tested for interaction between the two apparent QTLs.
The interaction between markers TG71 and TG116
was highly signiWcant (LOD = 7.67). The total associ-
ation (main eVect plus interaction) of the two loci
with chlorosis is equivalent to an LOD of 19.72.
Chlorosis was absent or at a very low level on most of
the genotypes when the B allele from TG71 or the TR

allele from TG116 was present (mean values were

from 0.06 to 0.25) (Table 1). However, with both
these alleles absent, severe chlorosis was observed on
most of the genotypes (mean value of 1.24), indicat-
ing that the chlorosis allele is recessive.

Minor eVect QTL

When the markers from chromosome 1 that were sig-
niWcantly associated with chlorosis were used as
‘background’ loci in the CIM approach, a new minor
eVect QTL (CIM LOD = 3.00) appeared on chromo-
some 12 linked to the marker locus TG263a. This
QTL was not detected by the SIM approach (SIM
LOD = 0.65), indicating that its eVect was masked by
the strong eVect of the major QTL on chromosome 1.

Fig. 2 Frequency distribution of the chlorosis rating (0, no
symptoms; 1, mild to moderate chlorosis and malformation; and
2, severe chlorosis and malformation) on 158 genotypes from
the backcross mapping population
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Fig. 3 Map showing the position of the chlorosis cml locus on
chromosome 1, and the chlorosis-accentuating locus on chro-
mosome 12. The integrated molecular linkage map combines
two framework maps based upon the segregation of 81 B alleles
and 35 TR alleles, respectively. Distances on the left are in cen-
tiMorgans (cM)
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As in the case of the QTL at TG71, chlorosis is asso-
ciated with the absence of a B allele at TG263a. No
other signiWcant QTL was detected through main
eVect or interaction tests.

Relationship of chlorosis to chlorophyll content

To determine whether the chlorotic symptoms were
related to diVerences in chlorophyll content we
analyzed the amount of chlorophyll a and b in 142
genotypes. Content of chlorophyll a ranged from 5.7
to 11.6 (mg g¡1 DW) with a mean value of 7.4
(mg g¡1 DW), while chlorophyll b ranged from 1.9 to
4.2 (mg g¡1 DW) with a mean value of 2.6
(mg g¡1 DW). The data from individual genotypes
were used in QTL mapping as indicated under Mate-
rials and methods. No signiWcant QTL was detected
for chlorophyll a or b content, or for the ratio of the
two.

We also compared the chlorophyll content of chlo-
rotic areas of the leaves with nearby areas that
showed no symptoms and with similar areas on leaves
from non-chlorotic genotypes. Tissues were not sig-
niWcantly diVerent in chlorophyll a content, but there
was a 50% reduction (P = 5 £ 10¡5) in the chloro-
phyll b content excised from lighter green/yellowish
blotches when compared to the green parts of the
chlorotic leaves or to the asymptomatic leaves
(Table 2).

Discussion

The chlorosis rating for plants that lacked both a B
allele linked to TG71 and a TR allele linked to TG116
was on average 1 point higher than the rating of other

plants in the population (Table 1). Chlorosis was not
detected in the parents of the hybrid, the backcross
parent, in the hybrid used to make the backcross, or in
siblings of the hybrid used to make the backcross. A
likely explanation is that a recessive allele from
USW2230, the S. tuberosum parent used to make the
hybrid, was the source of the allele for chlorosis
linked to TG71. Since USW2230, which was derived
from the tetraploid cultivar Saco (Akeley et al. 1955),
did not show severe chlorotic symptoms, we infer that
USW2230 was heterozygous for the chlorotic gene,
and that it contributed the recessive allele to the
hybrid. Likewise, under this assumption the back-
cross parent (HH1-9) was heterozygous for the chlo-
rotic gene.

The proposed gene symbol (cml) for this mutation
stands for chlorotic and malformed leaves. It would
then follow that plants homozygous for the recessive
cml allele showed the chlorotic symptoms.

The low ratings of eight genotypes (Table 1) that
lacked both a B allele at TG71 and a TR allele at
TG116 can likely be explained by crossovers, since
the cml locus does not appear to be exactly at either of
these markers. Because the locus is closer to TG71

Table 1 Intralocus interaction between a B allele at TG71 and a TR allele at TG116 on chromosome 1

a Only genotypes analyzed with both molecular markers are shown in the table, thus reducing the number from 158 to 143
b The Fisher’s exact test of independence of the two markers and the chlorosis was signiWcant at P = 3 £ 10¡13

Allele status Number of 
genotypesa

Qualitative ratingb Quantitative rating

B allele
at TG71

TR allele 
at TG116

No chlorosis or very mild
chlorosis (mean value <1)

Intense chlorosis
(mean value ¸1)

Average chlorosis 
rating score § s.e.

+ + 41 41 0 0.06 § 0.02

+ ¡ 41 39 2 0.09 § 0.06

¡ + 36 31 5 0.25 § 0.10

¡ ¡ 25 8 17 1.24 § 0.16

Table 2 Content of chlorophyll a and b in chlorotic and non-
chlorotic plants

Analyzed
tissue

Chlorophyll a
(mg g¡1 DW) § s.e.

Chlorophyll b
(mg g¡1 DW) § s.e.

Non-chlorotic
leaves

7.41 § 0.08 2.61 § 0.04

Chlorotic leaves

Green areas 7.41 § 0.09 2.56 § 0.19

Yellowish
areas

7.35 § 0.13 1.29 § 0.17
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(6.1 cM) than to TG116 (17.5 cM), we can expect the
apparent eVect of a B allele at TG71 to be slightly
greater in reducing chlorosis than that of a TR allele at
TG116. The data in Table 1 tend in this direction,
although the diVerence is small in comparison to the
experimental variation.

Eleven of the 12 genotypes with the most severe
chlorosis (scores 1.85–2.00, see Fig. 2) had both B
absent at TG71 and TR absent at TG116. (The single
exception lacked a TR allele at TG116, but had a B
allele at TG71; however, a B allele was absent at
TG70, so a crossover may have occurred between
TG71 and cml—see Fig. 3). All 12 of these geno-
types also had a B allele absent from TG263a.The
absence of a B allele at TG263a by itself did not
have a detectable eVect on chlorosis; genotypes hav-
ing a B allele absent showed about the same level of
chlorosis as genotypes with a B allele present (0.09
and 0.07, respectively) in the presence of both a B
allele at TG71 and a TR allele at TG116. However,
the absence of a B allele at TG263a intensiWed chlo-
rosis (1.30 when absent versus 1.05 when present)
when both a B allele at TG71 and a TR allele at
TG116 were absent.

Relationship of chlorosis to chlorophyll content

Since the chlorotic blotches comprised only a small
portion (<10%) of the whole leaf, we assume that the
50% reduction in chlorophyll b content of blotches
was not reXected in the whole leaf analysis because it
was masked by genotype-to-genotype and other vari-
ation. For example, if 10% of the leaf area on a chlo-
rotic plant was aVected by chlorosis, and if the
aVected area had a 50% decrease in chlorophyll b
content, the whole leaf analysis would show only a
5% decrease in chlorophyll b content—a diVerence
probably too small to be detected by the methods
used. The mosaic pattern observed in the chlorotic
leaves suggests that the gene causing this eVect acts
during leaf development, aVecting some, but not all
parts.

Other genes for chlorosis

At least four other chlorosis mutations have been
reported in potato: virescens, yellow margin, green,
and light green. Inheritance studies indicate that all of
these mutations are conferred by single recessive

genes. Virescens (v) is characterized by its light green
coloration and retardation in early growth (Hermsen
et al. 1978). Hermsen (1978) found a linkage between
virescens and an S-bearing translocation that controls
the incompatibility reaction in potato. This S-locus is
not linked with the incompatibility S-locus that is
located on chromosome 1 (Hermsen 1978; Eijlander
et al. 2000). By means of trisomic analysis both the S-
translocation and the v locus that confers virescens
chlorophyll deWciency mutation were mapped to
chromosome 12 (Hermsen et al. 1973). Unfortu-
nately, the exact position of the v gene on the molecu-
lar map is not known, and therefore we cannot
compare its location to the minor eVect QTL found at
TG263a. Another light green mutation, similar to
virescens, was described by De Jong et al. (1998) and
named light green (lg). The light green is closely
linked with a gene that is lethal in the homozygous
recessive state. The lg locus is located on chromo-
some 6, between RFLP markers CP18 and GP24 (De
Jong et al. 1998) and therefore diVerent both from the
major and minor eVect loci found in our backcross
population.

The yellow margin (ym) mutation is characterized
by small roundish leaXets with yellow or reddish mar-
gins (Simmonds 1965; Hermsen et al. 1978). Though
the ym gene was originally mapped on chromosome
12 by means of trisomic analysis (Wagenvoort 1982),
later mapping with molecular markers put the gene on
chromosome 5 (Jacobs et al. 1995). Neither a gene
location on chromosome 5 nor the description of the
ym phenotype match the chlorosis observed in the
present work.

Yet another chlorophyll mutation that is controlled
by a single recessive gene was described by Jones
et al. (1963) and named green (g). Plants that are
homozygous recessive at this locus have reduced
chlorophyll levels and aVected iron metabolism. The
g locus is closely linked to a locus controlling produc-
tion or expression of anthocyanin pigment in potato
(Plaisted and Peterson 1967). Since none of the loci
known to control anthocyanin are present on chromo-
somes 1 or 12 (Van Eck et al. 1993; Van Eck et al.
1994; Jacobs et al. 1995; Jung et al. 2005; Simko,
unpublished) the g gene appears to be diVerent from
the cml gene or the QTL that accentuated chlorosis in
our studies.

Because the molecular maps of potato and tomato
are highly colinear (Bonierbale et al. 1988; Tanksley
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et al. 1992), we compared the locations of the potato
chlorosis genes to those residing on tomato chromo-
somes 1 and 12. Rick (1980) lists at least seven genes
on chromosome 12 that are chlorosis related: albes-
cent (alb)—strong white or light green vegetation;
auroid (aud)—uniform yellow foliage; Xecked dwarf
(fd)—retarded plant with light green Xecked leaves;
multifurcata (mua)—dull green interveinal chlorosis
and multibranched Wrst inXorescense; and three genes
for yellow-green (yg-2, yg-3, yg-4)—foliage uni-
formly yellow-green. Moreover, the Cab-5 gene for
the chlorophyll a/b binding peptide is also located on
this chromosome (Pichersky et al. 1987; Tanksley
et al. 1992).

Chromosome 1 harbors another eight genes that
might be chlorosis related: aurea (au)—bright yellow
foliage, dilatata (dt)—yellowish leaves with darker
veins; Xavescens (Xa)—light green leaves with only a
few segments; imbecilla (imb)—weak plant that has
yellowish leaves with a few branches; indiga (ind)—
small plant with dainty, gray-green leaves; jaundiced
(jau)—plant with retarded growth and dull yellow
green foliage; suVlaminata (sfa)—smaller chlorotic
plant with concave pinnae; and viroid (vrd)—plant
with very distorted leaves that show white-speckled
chlorosis (Rick 1980). Van Tuinen et al. (1996)
showed that the chlorophyll deWciency observed in
aurea mutants is due to a disturbance in the biosyn-
thesis of phytochrome chromophore. Levels of both
chlorophyll a and b are reduced in these tomato
mutants (Koornneef et al. 1985), whereas for our
potato mutant we detected a reduction only in the
level of chlorophyll b.

Of the symptoms listed above, those described for
viroid bear close resemblance to what we observed in
the most severely aVected plants of our population.
Expression of both vrd and cml appear to be environ-
mentally sensitive. In our mapping population, sev-
eral genotypes showed mild or even medium
chlorotic symptoms in some replications but no chlo-
rosis in others. Similarly the viroid mutation is
reported to be environmentally sensitive (Rick and
Zobel 1969). Comparison of the potato and tomato
(Bonierbale et al. 1988; Tanksley et al. 1992) linkage
maps indicates that cml is located in a similar chro-
mosomal area to that of vrd. All this suggests that cml
might be orthologous to the tomato vrd gene,
although much stronger evidence would be needed to
establish such a connection.

In addition to the QTL we observed at TG263a it is
of course possible that still other genes in our popula-
tion aVected the severity with which cml is expressed.
For example, genes for chlorosis orthologous to the
ones known to occur on tomato chromosome 1 would
have been diYcult to detect in our analysis, especially
if close to TG71 or if segregating from the recurrent
parent. Finer mapping or cloning would be needed to
resolve such a question.

Occurrence of cml in breeding populations

The recessive cml allele that is associated with the
chlorotic mutation in the homozygous state may be
common in potato germplasm, at least in North Amer-
ica. The HH1-9 recurrent parent, one of the cml-allele
donors in our mapping population, was selected from
an inter-mated population of 800 S. tuberosum hap-
loids originating from several tetraploid cultivars
(Sanford and Hanneman 1982). The other cml-allele
donor is USW2230, a dihaploid derived from the tet-
raploid cultivar Saco (Bonierbale et al. 1994). Culti-
var Saco originated from a cross between two USDA
breeding lines (USDA X96-56 and USDA 41956)
(Akeley et al. 1955), one of which was likely a carrier
of the cml gene. Both parents of Saco were frequently
used in the potato-breeding programs leading to
development of several cultivars grown in the USA
and Canada. In our previous study (Simko et al.
2004b) we found that line USDA X96-56 is present in
pedigrees of at least 25 cultivars including Kennebec,
Superior, and Early Gem, and a large number of
breeding lines. The line USDA 41956 was less fre-
quently used in crosses, but still could be traced in
pedigrees of at least three cultivars and several breed-
ing lines (Simko et al. 2004b).

Concluding remarks

It is diYcult to assess the practical implications of the
presence of cml in potato breeding populations,
except that oVspring homozygous recessive for the
trait are clearly defective. We do not know whether
cml has harmful eVects when heterozygous, espe-
cially in tetraploid populations. There is evidence that
the recessive mutant ym even bestows a beneWcial
eVect in the heterozygous condition (Dodds and Pax-
man 1962); conceivably, the same could be true for
one or more other chlorotic mutants. Knowledge
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about the chromosome locations for cml and other
chlorotic genes should facilitate investigation of such
questions.

Chlorotic mutants such as cml and the modifying
locus on chromosome 12 could prove to be useful
tools in the study of chlorophyll formation. For exam-
ple, it would be interesting to know why cml aVects
only levels of chlorophyll b, whereas levels of both
chlorophyll a and b are reduced in aurea tomato
mutants (Koornneef et al. 1985).
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